
A Human-Like Agent Based on
a Hybrid of Reinforcement and Imitation Learning

Rousslan Fernand Julien Dossa∗, Xinyu Lian∗, Hirokazu Nomoto†, Takashi Matsubara∗ and Kuniaki Uehara∗
∗Graduate School of System Informatics, Kobe University, Hyogo, Japan

Email: {doss@ai.cs., rensy94@ai.cs., matsubara@phoenix., uehara@}kobe-u.ac.jp
†EQUOS RESEARCH Co., Ltd, Tokyo, Japan

Email: i19341_nomoto@aisin-aw.co.jp

Abstract—Reinforcement learning (RL) builds an ef-
fective agent that handles tasks in complex and un-
certain environments by maximizing future reward.
However, the efficiency is insufficient for practical use
such as game AI and autonomous driving. An effective
but selfish agent conflicts with other humans, and hence
the demand of a human-like behavior arises. Imitation
learning (IL) has been employed to train an agent
to mimic the actions of expert behaviors provided as
training data. However, IL tends to build an agent
limited in performance by the expert skill, and even
worse, the agent exhibits an inconsistent behavior since
IL is not goal-oriented. In this paper, we propose a
training scheme by mixing RL and IL for both discrete
and continuous action space problems. The proposed
scheme builds an agent that achieves a performance
higher than an agent trained by only IL and exhibits a
more human-like behavior than agents trained by RL
or IL, validated by human sensitivity.

Index Terms—Reinforcement Learning, Imitation
Learning, Human-Like Behavior, Game AI, Au-
tonomous Driving

I. Introduction
Reinforcement learning (RL), where an agent learns a

policy by interacting with an environment, has achieved
impressive progress in many areas recently, such as Go [1],
autonomous driving [2]–[5], and video games [6], [7]. Since
the RL model is trained to maximize future reward, an
RL agent tends to be efficient. However, high efficiency
is not the only important factor in practical use. In a
game, an RL non-player character (NPC) instantiated as
an opponent may be too strong to be defeated, resulting
in the player being quickly frustrated and not enjoying
the game. Similarly, a solely efficiency oriented RL au-
tonomous vehicle is likely to inconvenience the surround-
ing cars and pedestrians, for example by taking abrupt
turns, or more generally by exhibiting a selfish, dangerous
behavior humanly hard to predict. Hence, an approach to
build a human-like agent is indeed desirable. On the other
hand, imitation learning (IL) trains an agent to learn a
policy from training data provided by human experts [8],

This study was supported by JST-Mirai Program Grant Num-
ber JPMJMI18B4, Japan, and partially supported by EQUOS RE-
SEARCH Co., Ltd.

Fig. 1: Building a hybrid model between Reinforcement
and Imitation learning

[9]. Therefore, we can expect an agent trained by IL to
behave in a human-like way. However, as IL is not in a
goal-oriented way but is limited to the demonstration data
provided by the human expert, the performance of an IL
agent is likely to be capped to the former’s.

In this paper, we aim to produce an agent behaving in
a human-like way while retaining high performance. An
intuitive overview is presented in the Fig. 1. We propose a
hybrid model based on RL and IL. We demonstrated the
performance level of an RL agent and tendency of human
expert’s behavior could be transferred via distillation and
IL to a student agent. We applied our approach to an
original game and an Atari game Gopher as environments
of discrete action spaces. We also applied our approach
to the TORCS racing simulator [10] as an environment of
a continuous action space, with an aim of demonstrating
its potential in real life applications such as autonomous
driving, where a human-like agent is highly desirable. A
performance test and a sensitivity test (like Turing test)
in double-blind fashion demonstrated that our approach
built agents that achieve better performances and exhibit
more human-like behaviors compared to RL and IL agents.

II. Related Work
A. Reinforcement Learning and Deep Q-Networks

Let us introduce the reinforcement learning
(RL) through the framework of Markov decision

processes (MDP). An MDP is defined by a 5-tuple
< S,A, Pa, Ra, γ >, where S is the set of states, A the
set of actions, Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)
the probability that state s will transition to state s′

due to action a on time-step t, Ra(s, s′) is the reward
received after transition from state s to the state s′, and
γ (0 < γ ≤ 1) is the discount factor that represents the
importance of future rewards compared to the present
rewards. During training, on every time-step t, the agent
obverses a state st ∈ S and performs an action at ∈ A.
In response, the environment returns the corresponding
reward rt and next state st+1.

In discrete action space cases, Deep Q-Network (DQN)
algorithm [6] has proven itself by achieving superhuman
performance on numerous experiments. From an arbitrary
state st at time-step t, the agent is trained to predict a
future return Rt =

∑T
t′=t γt′−trt′ ,where T is the terminal

time-step. The agent then takes an action that maximizes
Rt according to the prediction. The optimal action-value
function is defined as Q∗(st, at) = maxπ E[Rt|s = st, a =
at, π], to which applying the Bellman equation yields:

Q∗(st, at) = Est+1∼E [rt + γ max
at

Q∗(st+1, at+1)|st, at].

During training, the agent estimates Rt by the action-
value function Q(ϕ(s), a), where ϕ is a preprocessed func-
tion that produces the fixed length representation of s,
and updates it iteratively as Algorithm 1, the Q(ϕ(s), a)
will finally converge to the optimal action-value function
Qi → Q∗ as i→∞ [11]. The complete process is presented
in Algorithm 1

Algorithm 1 Deep Q-learning with Experience Replay
Initialize the replay memory D to capacity N
Initialize the action-value function Q with random
weights
for episode= 1, M do

Initialize the sequence s1 = {x1} and the prepro-
cessed sequenced ϕ1 = ϕ(s1)
for t = 1, T do

With probability ϵ select a random action at

otherwise select at = maxa Q∗(ϕ(st), a; θ)
Execute action at in emulator and observe the
reward rt and the resulting image xt+1
Set st+1 = st, at, xt+1 and preprocess
ϕt+1 = ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of (ϕj , aj , rj , ϕj+1) from
D

Set yj =

{
rj for terminal ϕj+1

rj + γ max
a′

Q(ϕ(sj + 1), a′; θ) otherwise
Perform a gradient descent step on
(yj −Q(ϕj , aj ; θ))2

end for
end for

B. Deep Deterministic Policy Gradient
We redefine the action space as A ⊂ RN to be con-

tinuous, and set the goal to obtain a policy π which
maximizes the expected return from the start distribu-
tion J = Eri,si∼E,ai∼π[R1]. While DQN achieves strong
performance over a high dimensional state space, it was
proven to be limited to low dimension discrete action
spaces. The Deep Deterministic Policy Gradient (DDPG)
method [12] is based on the Deterministic Policy Gradient
(DPG) method [13], which defines the policy of the RL
agent as an actor function µ(s|θµ) parametrized by θµ

and mapping from a state st to a corresponding action at,
and a critic function Q(st, at) to approximate the value
of a state-action pair (st, at). The actor update is then
performed accordingly to the policy gradient as defined by
David Silver et al. [13].

By introducing deep and non-linear approximators, the
update of the critic function Q(s, a|θQ) becomes prone to
divergence. In response, the DDPG method leverages ‘soft‘
target updates by creating copies µ′(s|θµ′) and Q′(s, a|θQ′)
to be used to compute the target values. These target
networks however are updated by slowly tracking original
networks: θ′ ← τθ + (1− τ)θ′ with τ << 1 to increase the
stability of the training.

Given that a large action space requires much more
exploration to converge to the optimal solution, an explo-
ration policy µ′(st) = µ(st|θµ

t) + N with an added noise
sampled from a noise process N which is chosen depending
on the nature of the task or the environment [14] is
adopted. The full procedure is detailed in Algorithm 2.

C. Imitation Learning
We assume the policy followed by the expert players

during demonstrations as the optimal policy π∗, and the
agent learns a policy π which approximates the optimal
policy π∗. A traditional approach is to train an agent by
supervised learning. The expert human players provide
trajectories that consist of sequences of state-action pairs
as the training data follows an optimal policy π∗. The
agent’s policy is trained to predict actions based on the
provided states and is thereby able to imitate the behavior
of the expert.

D. Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning (GAIL) [15]

is a method based on both Inverse Reinforcement Learning
(IRL) and classical RL. IRL first fits a cost function c from
a family of function C assigning low cost to the expert
policy πE and high cost to the other policies π:

max
c∈C

(
min
π∈Π
−H(π) + Eπ[c(s, a)]

)
− EπE

[c(s, a)]

where Π is the set of all stationary stochastic policies
mapping from S to A and H(π) ≜ Eπ[−logπ(a|s)] is the
γ-discounted causal entropy of the policy π [15]. On the

Algorithm 2 Deep Deterministic Policy Gradient algo-
rithm

Randomly initialize the critic network Q(s, a|θQ) and
the actor µ(s|θµ) with weights θQ and θµ respectively
Initialize the target networks Q′ and µ′ with weights
θQ′ ← θQ, θµ′ ← θµ respectively
Initialize the replay buffer R
for episode= 1, M do

Initialize a random noise process N for action explo-
ration
Obtain the initial observation state s1
for t = 1, T do

Select an action at = µ(s|θµ) +Nt according to the
current policy and exploration noise
Execute the action at and observe the correspond-
ing reward rt and new state st+1
Store the transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions
(si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ(si+1|θµ′)|θQ′)
Update critic by minimizing the loss:

L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy
gradient:
∇θµJ ≈ 1

N∇αQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

other hand, classical RL finds the optimal policy from the
cost function c extracted by IRL:

RL(c) = argmin
π∈Π

−H(π) + Eπ[c(s, a)]

corresponding to the expert policy πE . To bypass the
intermediate IRL step, J. Ho and S. Ermon intoduced
the concept of occupancy measure ρπ of a policy π, which
can be interpreted as the distribution of state-action pairs
that an agent encounters when navigating the environment
by following said policy [15]. A function approximator
Dw : S × A → (0, 1) is used to discriminate between the
occupancy measure ρπ of the student policy and the expert
ρπE

by minimizing the sum of their respective expectations
over generated trajectories:

Eπ[log(Dw(s, a))] +EπE
[log(1−Dw(s, a))]−λH(π), λ ≥ 0

until Dw can no longer distinguish between the π and πE ,
meaning that the student has learned the expert’s policy.
Algorithm 3 recapitulates the complete procedure.

E. Distillation
Knowledge distillation is an approach that trains a

student model based on teacher model(s), where instead of

Algorithm 3 Generative Adversarial Imitation Learning
1: Input: Expert trajectories τE ∼ πE , initial policy and

Discriminator parameters θ0, w0
2: for i = 0, 1, 2, ... do
3: Sample trajectories τi ∼ πθi

4: Update Discriminator parameters from wi to wi+1
with the gradient

5: Êτi [∇wlog(Dw(s, a))] + ÊτE
[∇wlog(1−Dw(s, a))]

6: Take a policy step from θi to θi+1, using the TRPO
rule with cost function log(Dw+1(s, a)).

7: Specifically, take a KL-constrained natural gradient
step with

8: Êτi [∇θlogπθ(a|s)Q(s, a)]− λ∇θH(πθ),
9: where Q(s, a) = Êτi [log(Dwi+1(s, a))|s0 = s, a0 = a]

10: end for

Fig. 2: Procedure of knowledge distillation.

a one-hot label commonly used in traditional supervised
learning, the teacher model trains the student model by
the model output which is called soft target [16]. Com-
pared to the one-hot label, the values of each dimension
of the soft target include more information. With a visual
input of a cat, of course, the probability of it being
classified as "cat" by the model would be the greatest,
and the probability of "dog" would be greater than that
of "carrot", which matches with the fact a cat is visually
more similar to a dog than it is to a carrot. The procedure
of knowledge distillation is presented in Fig. 2. Not only
does this approach achieves a higher performance model
with less training data, it is also useful to compress large
models. The reference [17] has extended this approach
to reinforcement learning area, which is named policy
distillation. They successfully trained the student model
that achieves higher performance by extracting the policy
of the teacher model. Furthermore, by distilling policies of
teacher models trained for different tasks, they demon-
strated policy distillation can be applied to multi-task
problems.

III. Proposed Method

Recall that our purpose is to build an agent performing
similarly to a human expert while retaining the high
performance of an RL expert model. This problem can be
separated in the two following subproblems: (1) building
an agent that has the human-level performance, and (2)
building an agent that selects actions similarly to a human
expert. As these two subproblems have been tackled by RL
and IL respectively, we consider our work as a multi-task
learning problem. In this paper, we propose a method for
mixing RL and IL by policy distillation for discrete action
space case and by adversarial imitation learning for the
continuous action space case.

In general, we express the objective function of IL as
Lπ∗(π), where π∗ is a teacher policy to be imitated by the
student policy π. Then, the proposed objective function is

Lmix(π) = αLπRL
(π) + (1− α)LπHE

(π),

where πRL is an optimal policy built by RL and πHE is
a policy of a human expert (HE), and α is a trade-off
coefficient between the RL policy and human expert.

In the case of discrete action space, we define the
objective function of IL as the following cross-entropy loss

Lπ∗(π) = Es [−
∑

a π∗(a|s) log π(a|s)] ,

following previous studies on IL and distillation [16], [17].
Since the policy πHE of a human expert is not mathe-
matically modeled but given as empirical demonstrations,
we cannot obtain soft labels of the policy for distillation.
Fortunately, the study on policy distillation improved the
performance by additionally using hard labels during the
training, namely computing a weighted average of the hard
and soft labels [17]. Following this, we used human expert
demonstrations πHE as hard labels and the policy π

(T)
RL of a

DQN model [6] for soft labels with a temperature T while
a typical policy of a DQN model employs T → 0.0 (i.e.,
provides hard labels). Then, the final objective function is

Lmix(π) =α EπRL

[
−

∑
a π

(T)
RL (a|s) log π(a|s)

]
+ (1− α) EπHE

[−
∑

a πHE(a|s) log π(a|s)] ,

A conceptual diagram of the entire procedure is shown in
Fig. 3.

In the continuous action space case, we employed the
GAIL method introduced in Section II-D. The GAIL
requires empirical trajectories τ∗ ∼ π∗ obtained from a
teacher policy π∗ for training. The objective function of the
discriminator to be maximized by Dw and to be minimized
by a student policy π is:

Lπ∗(π) = Eτ∼π[log(Dw(s, a))]+Eτ∗∼π∗ [log(1−Dw(s, a))],

where τ denotes trajectories τ ∼ π sampled from a student
policy π. With a human expert and an RL agent respec-

Fig. 3: Building an agent based on the hybrid loss : discrete
action space case

Fig. 4: Building an agent based on the hybrid loss: contin-
uous action space case

tively providing trajectories τHE ∼ πHE and τRL ∼ πRL,
the hybrid loss function can be written as:

Lmix(π) =Eτ∼π[log(Dw(s, a))]
+ α EτRL∼πRL

[log(1−Dw(s, a))]
+ (1− α) EτHE∼πHE

[log(1−Dw(s, a))],
(1)

Intuitively, having the discriminator trained to recognize
an intermediate hybrid policy between the human and
RL expert respective policies, the student model — which
is trained to learn a policy to fool the discriminator to
classify its actions as being the expert’s — is expected to
converge to said hybrid policy, thereby exhibiting behav-
iors inherited from both experts. A conceptual diagram of
the entire procedure is shown in Fig. 4.

!"#$%&

'(("%

)*+#",-.*&%

Fig. 5: A screenshot of the Apple Game.

Fig. 6: A screenshot of Gopher.

IV. Experiments

A. Apple Game

We first applied our approach to an original game called
apple game, whose screenshot is provided in Fig. 5. In this
game, at any time-step, there is one and only one apple
in the environment, which disappears after being taken by
the player or after a certain period of time has passed,
then reappears randomly somewhere else. The goal of the
agent is to take the apple to score one point each. The
action space A contains moves in 8 directions and rest,
that is, A = [(−1,−1), (0,−1), ..., (1, 1)], |A| = 9. Hence,
the action space is discrete.

From each expert, we collected gameplay a total of
16,000 frames, which were randomly sampled into training
and test sets of size 14,500 and 1,500 respectively during
the training, to avoid overfitting and reliably test the
accuracy of the model. We trained a DQN model for
comparison and to serve as the RL teacher. The student
model was trained using Adam optimizer [18] with a
learning rate of 10−4 and dropout ratio of 0.5 [19]. We set
the temperature T = 0.1 for distillation and the trade-off
coefficient α = 0.93.

Table I: Hyperparameters used for DQN training on Apple
game and Gopher

Hyperparameter Apple Gopher
Total frames Tplay 8 · 106 1.001 · 107

Optimizer Adam
Learning rate 10−6 10−4

Batch size 32
Update frequency 4
Loss MSE
Replay memory 2 · 105 106

Observed frame 4 · 105 104

Discount rate 0.9 0.99
Initial exploration εT0 1.0
Final exploration εTexploration

0.1 0.01
Final exploration frame Texploration 4 · 106 107

Frame skip Tskip 4
History length Lhistory 4
Image size S × S 84 × 84

Table II: Training hyperparameters for hybrid agent on
Apple game and Gopher

Hyperparameter Apple game Gopher
Total frames Tplay 2 · 105

Optimizer Adam
Learning rate 10−4

Dropout rate 0.5
Temperature τ 0.1
average weight α 0.93 0.8

B. Atari 2600 Game: Gopher
We also applied our method to an Atari 2600 game

called Gopher, which is slightly more complicated than the
Apple game. The goal is to prevent the "gopher" — a mole-
like creature — from digging its way out of the ground
and steal the carrots under the protection of the player
by moving laterally and filling up the hole as the gopher
dig them. A screenshot of the game is provided in Fig. 6.
The training data provided by the human and RL experts
consisted of 55,000 frames each, which were also randomly
sampled in training and test sets of size 50,000 and 5,000
respectively. We trained the student model following the
same method used for the apple game except for the trade-
off coefficient α = 0.8.

C. Torcs
The Torcs racing car simulator [10] is a well known

environment used for autonomous driving AI research (see
[20], [21]). A screenshot of the game is shown in Fig. 7. For
this experiment, we used the Gym Torcs environment [22]
as a basis. The agent observations consisted of 65 low-level
features, i.e. sensors keeping track of the distance between
the car and the edges of the track or the opponents, the
current speed and acceleration etc., with a bi-dimensional
continuous action space to control the steering and the
throttling of the car, while using the raced distance as the
reward function. The RL agent was based on the DDPG
implementation in the OpenAI Baselines [23], which we
adapted to the autonomous driving problem and trained
using the hyperparameters as specified in Table III.

Fig. 7: A screenshot of Torcs.

Table III: Hyperparameters used for DDPG training on
Torcs

Hyperparameter Value
Total timesteps Tplay 107

Optimizer Adam
Critic learning rate 10−4

Actor learning rate 10−3

Epochs 100
Epoch cycles 20
Train steps 50
Rollout steps 100
Replay memory 106

Discount rate γ 0.99
Target network update τ 10−2

Table IV: Hyperparameters used for GAIL and Hybrid
model training on Torcs

Hyperparameter GAIL Hybrid
Episode count 220
Transition per episode 3600
Total transitions 7.92 · 105

Optimizer Adam
Discriminator learning rate 10−3

Emtropy coefficient λ 10−3

KL constraint 10−2

Trade-off coefficient α None 10−3

Training timesteps 5 · 106 7.5 · 106

Furthermore, we upgraded the racing car simulator
Torcs to simulate a situation where the human decision
factor would stand out more, namely by generating ob-
stacles in the form of stationary bots and added player
demonstration recording support, which we used to record
220 episodes of 60 seconds of gameplay, totaling 792,000
transitions.

The strict IL part consisted in imitating a human expert
based on recorded data while driving in the same setting as
the RL experiment, using the OpenAI [23] implementation
of the GAIL method and the hyperparameters value spec-
ified in Table IV. Finally, hybrid model, also based on the
GAIL implementation but with the discriminator modi-
fied according to the Equation 1 described in section III
was also trained in the same setting, using α = 0.5 to
maintain a balance between the two experts. The other
hyperparameters value used can be found in Table IV.

D. Evaluation by Sensitivity Test
Besides the performance evaluation of each model, we

also conducted a sensitivity test in a double-blind fashion
to evaluate the human-likeliness of the agents’ behaviors.
The test involved 26 participants (23 males and 3 females),
their age ranged from 27 to 59, with an average of 44
years old. The participants were employees of EQUOS
RESEARCH Co., Ltd, which never had prior exposure
to this research’s materials or demonstrations, as well as
previous studies. They were first introduced to the rules of
the games and provided with the opportunity to play the
game by themselves to have an approximate idea of the
mechanics and how a human would play. For each game
(Apple game, Gopher and Torcs), each participant was
presented with two 15 seconds (30 seconds for Torcs) video
of each model playing the game and requested to label it
as either human or machine and comment the reasons.

V. Results and Discussion
A. Apple Game

We collected the cumulated rewards over 400 episodes of
each agent playing the game. In the apple game, the score
was the number of apples collected in a 15 seconds interval.
Given the simple principle of the game, i.e. moving the
player avatar to the spawning apples, the DQN method
achieved the highest scores, followed by the proposed
method and finally the human agent and its imitation.
The detailed results are documented in Table V. As far as
human-likeliness is concerned, the human agent came out
first. The hybrid model exhibited a human-like behavior
more than the RL agent while surpassing the human
expert and IL agent in score, followed by the human
imitation agent and finally the DQN agent achieved by
far the less human-like behavior. Hence, we conclude that
the proposed approach balances the human-like behavior
and high-performance in this game.

B. Atari 2600 Game: Gopher
From a viewpoint of the performance, the DQN agent

achieved the highest score by a large margin, followed by
the hybrid agent trained using the proposed method, and
finally the human agent and its imitation. The hybrid
agent, despite prioritizing the RL label by using α = 0.8 to
compute the weighted sum of the teachers’ labels during
the training, only showed an improvement of 3 points
over the human agent, and still quite a far way from the
DQN agent’s score. While the RL agent achieved the best
results, only a few participants identified it as a human. In
this game, the hybrid agent surpassed the IL agent in both
the criteria: game score and human-like behavior. Hence,
we conclude that the proposed method built an agent
with a human-like behavior by combining the goal-oriented
learning scheme of RL and the tendency of human expert’s
behavior. Surprisingly, the hybrid agent was recognized
as a human in the sensitivity test more likely than the

Table V: Results of Apple Game

Game Score Sensitivity Test
Agent Max Min Average Std. Identified as Human (%)

Human 27 11 18.71 2.86 64.0

DQN (RL) 53 15 36.27 5.44 8.0
IL 29 3 17.57 4.37 44.0

Proposed method (RL+IL) 35 11 22.02 3.70 54.0
The best and second best results are emphasized by bold fonts and underlines, respectively.

Table VI: Results of Gopher

Game Score Sensitivity Test
Agent Max Min Average Std. Identified as Human (%)

Human 81 2 23.87 19.81 55.70

DQN (RL) 246 0 40.30 36.81 32.69
IL 126 0 23.91 23.79 59.62

Proposed method (RL+IL) 132 0 26.05 24.31 59.62
The best and second best results are emphasized by bold fonts and underlines, respectively.

Table VII: Results of Torcs

Game Score (×103) Sensitivity Test
Agent Max Min Average Std. Identified as Human (%)

Human 48.70 27.68 40.17 3.63 50.00

DDPG (RL) 41.91 39.91 40.45 0.43 30.77
IL 39.93 14.88 23.99 1.16 51.92

Proposed method (RL+IL) 40.22 6.71 36.63 1.32 61.54
The best and second best results are emphasized by bold fonts and underlines, respectively.

human agent. To shed the light on this trend, we ex-
tracted comments tied to the misclassifieda human player
demonstrations such as: “the player systematically fills the
holes”, “there are only a few futile movements” or “the
movements are machine-like”. It appears the performance
of the human expert was underestimated or the level of the
human expert too high, especially regarding participants
not so familiar with video games.

C. Torcs
The first evaluation phase consisted in measuring the

performance of the proposed model and compare it against
the human, GAIL human imitation, and the DDPG agent
respectively, as documented in Table VII.

While the GAIL method excelled at imitating experts
trajectories strictly generated by RL policies (results of
[15]), deterministic bots coming with the Torcs racing car
simulator, or even the DDPG agent, it turned out to be less
effective when applied on a human expert’s trajectories,
achieving at best around half the score of the latter.
We hypothesized it to be a consequence of the human
expert’s policy being relatively more complex and hard
to approximate with standard neural networks structures.

Meanwhile, the hybrid model was able to capture and
demonstrate specific behaviors of both the human expert
as well as the RL agent, namely a higher speed than

the imitated human expert and deceleration during turns
respectively. In addition, it was also able to complete full
laps, like the human expert and the DDPG agent.

By increasing order of human-likeliness, we have the
DDPG agent, which was given away by its high-
performance behavior, with comments such as “drives
really fast” or “can take turns with high speed”. To our
surprise, the human agent itself scored lower than what
could be expected. For a given human demonstration,
diverging opinions were voiced. We hypothesize this is
could be the result of personal interpretation of the par-
ticipants, who may have not expected such a performance
demonstrated from the expert. In addition, the human
imitation agent which achieved a lower performance than
the expert has a better success rate, which seems to match
with the previous hypothesis. Finally, the hybrid model
which was rated the most human-likely, while nearing the
performance of the DDPG agent.

VI. Conclusion
This study proposes a method to build a hybrid agent

which behaves in a human-like fashion imitated from a
human expert while retaining some of the high perfor-
mance displayed by pure reinforcement learning agents,
ultimately aiming for the best of both worlds. We based
our method on state-of-the-art reinforcement and imita-

tion learning algorithms and proposed two variants for
discrete and continuous action spaces respectively. We
applied said method to an original game and an Atari2600
game for the discrete action space case, and on the Torcs
racing car simulator for the continuous action space case.
We first evaluated its performance before evaluating its
human-likeliness through a sensitivity test. The proposed
method successfully exhibited behaviors borrowed from
both experts, namely an increase of performance following
the reinforcement learning expert as well as a human-like
behavior following the human counterpart.

References
[1] D. Silver et al., “Mastering the game of go without human

knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.
[2] A. E. Sallab et al., “Deep reinforcement learning framework for

autonomous driving,” Electronic Imaging, vol. 2017, no. 19, pp.
70–76, 2017.

[3] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv
preprint arXiv:1610.03295, 2016.

[4] D. Isele et al., “Navigating occluded intersections with au-
tonomous vehicles using deep reinforcement learning,” in 2018
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 2034–2039.

[5] B. Vikas, “Deep reinforcement learning approach to autonomous
navigation,” 2017.

[6] V. Mnih et al., “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[7] ——, “Asynchronous methods for deep reinforcement learning,”
in International conference on machine learning, 2016, pp.
1928–1937.

[8] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,”
in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 627–635.

[9] J. Ortega et al., “Imitating human playing styles in super mario
bros,” Entertainment Computing, vol. 4, no. 2, pp. 93–104, 2013.

[10] B. Wymann et al., “Torcs: The open racing car simulator,” 2015.
[11] R. S. Sutton et al., Reinforcement learning: An introduction.

MIT press, 1998.
[12] T. P. Lillicrap et al., “Continuous control with deep

reinforcement learning,” CoRR, vol. abs/1509.02971, 2015.
[13] D. Silver et al., “Deterministic policy gradient algorithms,”

in Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32,
ser. ICML’14. JMLR.org, 2014, pp. I–387–I–395.

[14] M. Plappert et al., “Parameter space noise for exploration,”
CoRR, vol. abs/1706.01905, 2017.

[15] J. Ho and S. Ermon, “Generative adversarial imitation
learning,” CoRR, vol. abs/1606.03476, 2016.

[16] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[17] A. A. Rusu et al., “Policy distillation,” CoRR, vol.
abs/1511.06295, 2015.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, 2014.

[19] N. Srivastava et al., “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Re-
search, 2014.

[20] B. Lau, “Using keras and deep determinis-
tic policy gradient to play torcs,” 2016. url:
https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

[21] Y. You, “Torcs for reinforcement learning.” url:
https://github.com/YurongYou/rlTORCS

[22] N. Yoshida, “Gym torcs,” 2016. url: https://github.com/ugo-
nama-kun/gym-torcs

[23] P. Dhariwal et al., “Openai baselines,” 2017. url:
https://github.com/openai/baselines

